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What is focused-ultrasound?

†Drug delivery †Neuromodulation

❊Thermoablation

Promising mode 
of treatment for 
various medical 

conditions

• †Meng et. al. (2020)
• ❊Kennedy (2005) 
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How it works?

Focused ultrasound 
transducer generates 
and focuses acoustic 

waves on the targeted 
region

†Drug delivery †Neuromodulation

❊Thermoablation
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Advantages

• Non-invasive
• The effect is localized
• Possibility of multiple 

repeated treatments
†Drug delivery †Neuromodulation

❊Thermoablation
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Why simulate?

• Enable patient specific 
treatment planning

• Prevent unwanted 
heating at non-target 
regions
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Model equation
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• Viscoelastic wave equation 

• The model is typically used for low-
intensity ultrasound application such 
as in transcranial focused ultrasound 
application
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Source boundary condition
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• Pressure wave generated by the 
ultrasound transducer
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Absorbing boundary condition
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• Absorbing boundary condition to 
absorb outgoing waves
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Initial-boundary value problem
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Semi-discrete equation
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Runge-Kutta method
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Solver design
• Fully hexahedral mesh

• High order GLL-based Lagrange finite element basis function

• Numerical integration is performed using GLL quadrature

• Mass lumping – diagonal mass matrix

• Matrix-free method

• 4th order explicit Runge-Kutta method

• Implemented using the FEniCSx open-source software
15



Solver algorithm
while (t < tf) {

    // COPY 1
    copy(*u_, *u0);
    copy(*v_, *v0);

    for (int i = 0; i < n_RK; i++) {
        
        // COPY 2
        copy(*u0, *un);
        copy(*v0, *vn);

        // AXPY A
        axpy(*un, dt * a_runge[i], *udot, *un);
        axpy(*vn, dt * a_runge[i], *vdot, *vn);

        // RK time evaluation
        tn = t + c_runge[i] * dt;

        // Solve for udot and vdot
        f0(tn, un, vn, udot); 
        f1(tn, un, vn, vdot);

        // AXPY B
        axpy(*u_, dt * b_runge[i], *udot, *u_);
        axpy(*v_, dt * b_runge[i], *vdot, *v_);
    }

    // Update time
    t += dt;
}

16

f0 ) u̇ = v

f1 ) v̇ = (M⌦ +M�)
�1(�K⌦u� (M� +K⌦)v + l1 + l2)



f1 function
// Update source
fill(g_.begin(), g_.end(), window * 2.0 * p0 * w0 / s0 * cos(w0 * t));

fill(dg_.begin(), dg_.end(), dwindow * 2.0 * p0 * w0 / s0 * cos(w0 * t) 

                  - window * 2.0 * p0 * w0 * w0 / s0 * sin(w0 * t));

// Update fields

u->scatter_fwd();

copy(*u, *u_n->x());

v->scatter_fwd();

copy(*v, *v_n->x());

// Assemble RHS

fill(b_.begin(), b_.end(), 0.0);

assemble_vector(b_, *L);
b->scatter_rev(plus());

// Solve
{

  // Element wise division

  // out[i] = b[i]/m[i]
  transform(_b.begin(), _b.end(), _m.begin(), out.begin(),

            [](const T& bi, const T& mi) { return bi / mi; });

}

17



Vector assembly
• A high percentage of time is 

spent on the vector assembly 
of the cell-wise operators.

• The action of the stiffness 
operator constitutes the 
highest percentage of time for 
vector assembly.
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Vector assembly – speed-up

• Precomputed geometric 
data implementation gives 
1.5 times speed-up
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Vector assembly – speed-up

• Precomputed geometric 
data implementation gives 
1.5 times speed-up

• Adding sum-factorization 
implementation gives 
approximately 5.5 times 
speed-up
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Fraction of peak performance

• Experiment was performed 
on the Intel Icelake CPU.

• The stiffness operator 
achieve a good fraction of 
peak performance in terms 
of the memory bandwidth.

• Between 50% – 90% of peak 
performance.
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Solver simulation time – speed-up
• The simulation time using 

the precomputed 
geometric data achieves a 
1.1 times speed-up.

• The operator with sum-
factorization achieves 3.2 
times speed-up of total 
simulation time.
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Strong scaling

• Doubling the number of 
processes half the time 
required for simulation

• The solver shows good 
strong scaling capability
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Solver verification

Aubry et. al. (2022)
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• A 3D transcranial ultrasound simulation

• Spherical curved transducer – focal 
length of 64 mm

• Transducer amplitude = 60 kPa

• Transducer frequency = 500 kHz

• Degrees of freedom: 70 x 106

• Number of time steps: 3.4 x 104

• The simulation took 1.5 hours using 256 
processes on Intel Skylake CPU.

• The simulation was run using double-
precision floating-point type.

6.4 cm
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Solution comparison with k-Wave solver
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Solution comparison with k-Wave solver
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•We have implemented a high-order matrix-free finite 
element solver for focused ultrasound application.
•The cell-wise operators achieve an excellent fraction of 

peak performance.
•The solver shows excellent parallel scalability through 

strong scaling.
•The solver is capable to handle realistic transducer 

shape, domain heterogeneity as well as geometrically 
complex scatterer shape.

Summary
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•Nonlinear model equation – Westervelt equation
• Important for modeling high-intensity ultrasound 
application
•The main motivation of solving in the acoustic 
wave equation in the time-domain

•Heterogenous computing
•GPU implementation of the solver

Outlook
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