Fast finite element solver for
focused ultrasound applications

Adeeb Arif Kor™, |gor Baratta®, Garth Wells”

"University of Malaya




What is focused-ultrasound?
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How it works?

TNeuromodulation
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Focused ultrasound
transducer generates
and focuses acoustic

waves on the targeted
region



Advantages

TDrug delivery tNeuromodulation

Skin

Undamaged tissue T —
7 g Ablated

in front of focus
—3 turinour
- 'Olume

LEDIVIT Ul buayuiauy
at focus (12 x 3 mm)

Transducer__

Tumour

*Thermoablation
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Advantages

* Non-invasive
e The effectis localized

*Thermoablation



Advantages

* Non-invasive

. * The effect is localized

Drug delivery fNeuromodulation * Possibility of multiple
repeated treatments
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Why simulate?

* Enable patient specific
treatment planning

TDrug delivery tNeuromodulation
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Why simulate?

* Enable patient specific
. treatment planning
tDrug delivery tNeuromodulation e Prevent unwanted

heating at non-target
regions

*Thermoablation



Model equation
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* Viscoelastic wave equation

* The model is typically used for low-
intensity ultrasound application such
as in transcranial focused ultrasound
application



Source boundary condition
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* Pressure wave generated by the
ultrasound transducer



Absorbing boundary condition
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* Absorbing boundary condition to
absorb outgoing waves



Initial-boundary value problem
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Semi-discrete equation




Runge-Kutta method
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Solver design

* Fully hexahedral mesh

* High order GLL-based Lagrange finite element basis function
* Numerical integration is performed using GLL quadrature

* Mass lumping — diagonal mass matrix

* Matrix-free method

 4th order explicit Runge-Kutta method

* Implemented using the FEniCSx open-source software



Solver algorithm

while (t < tf) { fo=u=v

Lot e fi=v=(Mgqg+Mp) ' (—Kqu — (Mr +Kq)v +1; +1)

copy (kv_, *v0);

for (int i = 0; i < n_RK; i++) { 100 94.8

// COPY 2
copy (*u@, *un);
copy (*v@, *vn);

S

// AXPY A
axpy(*un, dt x a_runge[il, =udot, *un);
axpy(*vn, dt x a_rungel[il, =xvdot, *vn);

S

// RK time evaluation
tn = t + c_rungelil * dt;

=

// Solve for udot and vdot
fo(tn, un, vn, udot);
f1(tn, un, vn, vdot);

S

// AXPY B
axpy(xu_, dt * b_runge[i], *udot, x*u
axpy(xv_, dt * b_runge[i], *vdot, xv

} 1.4 1.2 1.4 0.6 0.7
| e sssssssssss  SSSSSss—

0 :
// Update time COPY1 COPY?2 AXPYA fo fi AXPY B
t += dt;

~
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Time spent within the algorithm (%)
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f, function

// Update source
fill(g_.begin(), g_.end(), window % 2.0 * p@ *x w@ / s@ *x cos(wd x t));
fill(dg_.begin(), dg_.end(), dwindow * 2.0 * p0@ * w@ / s@ * cos(w@d *x t)

— window * 2.0 * p@ * w@ * w@ / s@ % sin(wd * t));

// Update fields
u—>scatter_fwd();

copy (*ku, *u_n->x());

v=>scatter_fwd();

copy (*v, xv_n->x());

// Assemble RHS
fill(b_.begin(), b_.end(), 0.0);
assemble_vector(b_, *L);

b->scatter_rev(plus());

// Solve
{
// Element wise division
// outli] = bl[i]l/m[il]
transform(_b.begin(), _b.end(), _m.begin(), out.begin(),
[1(const T& bi, const T& mi) { return bi / mi; });

Time spent within f; function (%)
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Vector assembly

= * A high percentage of time is
spent on the vector assembly

of the cell-wise operators.

50 - 49.1
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* The action of the stiffness
operator constitutes the
highest percentage of time for

vector assembly.
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Vector assembly — speed-up

* Precomputed geometric
data implementation gives
1.5 times speed-up
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Vector assembly — speed-up

1 1 EEE FENiCSx

==esore | o Precomputed geometric
data implementation gives
1.5 times speed-up

* Adding sum-factorization
implementation gives
approximately 5.5 times
speed-up
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Fraction of peak performance

4% 10° —-raevos | * EXperiment was performed

—e— Single

on the Intel Icelake CPU.

3 % 10°-

* The stiffness operator
achieve a good fraction of

I peak performance in terms
o of the memory bandwidth.

| | * Between 50% — 90% of peak
P ,. : performance.

MByte/s
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Solver simulation time — speed-up

1.0 -

0.8 -

Normalised simulation time

0.2
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1.1x

mmm FEniCSx
mm FEniCSx + PC
mmm FEniCSx + PC + SF

* The simulation time using
the precomputed
geometric data achieves a
1.1 times speed-up.

* The operator with sum-
factorization achieves 3.2
times speed-up of total
simulation time.
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Strong scaling

109
—e— 31 x 10° dof

62 x 10° dof

e * Doubling the number of
processes half the time
required for simulation

1071

* The solver shows good
strong scaling capability

Wall time / time step [s]

1072 1

64 128 256 512 1024 2048
Number of cores



Solver verification
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Aubry et. al. (2022)

A 3D transcranial ultrasound simulation

* Spherical curved transducer — focal
length of 64 mm

* Transducer amplitude = 60 kPa

* Transducer frequency = 500 kHz
Degrees of freedom: 70 x 10°
Number of time steps: 3.4 x 10*

The simulation took 1.5 hours using 256
processes on Intel Skylake CPU.

The simulation was run using double-
precision floating-point type.
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olution comparison with k-Wave solver

FENiCSx-US - Pressure Amplitude (XY)
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olution comparison with k-Wave solver

Pressure [kPa]
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FEniCSx-US - Profiles
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Summary

* We have implemented a high-order matrix-free finite
element solver for focused ultrasound application.

* The cell-wise operators achieve an excellent fraction of
peak performance.

* The solver shows excellent parallel scalability through
strong scaling.

* The solver is capable to handle realistic transducer
shape, domain heterogeneity as well as geometrically
complex scatterer shape.



Outlook

* Nonlinear model equation — Westervelt equation
*|mportant for modeling high-intensity ultrasound
application
*The main motivation of solving in the acoustic
wave equation in the time-domain
* Heterogenous computing
* GPU implementation of the solver
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